# PHOSPHORUS HETEROCYCLE SYNTHESIS BY RPX<sub>2</sub>. AlX<sub>3</sub> ADDITION TO [1,*n*] DIENES—VIII

## THE SYNTHESIS AND STRUCTURE OF 3, 9-DIOXA-2, 4-DIPHOSPHABICYCLO [3.3.1] NONANES.

A. RUDI, D. REICHMAN, I. GOLDBERG\* and Y. KASHMAN\* Department of Chemistry, Tel-Aviv University, 69978 Ramat Aviv, Israel

#### (Received in UK 17 January 1983)

Abstract—3, 9-Dioxa-2, 4-diphosphabicyclo [3.3.1] nonanes were synthesized by the reaction of methyl dihalophosphane with 1, 5-diphenylpentan-1, 5-dione in acetic acid. The structures of two (2 to 1) addition products (2 and 3) were established by X-ray diffraction analysis. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of the new compounds are discussed.

The use of the RPX<sub>2</sub>.AlX<sub>3</sub> complex (1) for the synthesis of new phosphaheterocycles starting from 1,*n*-dienes has been described in previous reports and summarized in a recent paper.<sup>1</sup> Furthermore, it could be shown that  $\beta\gamma$ - and  $\gamma\delta$ -unsaturated ketones and imines also react with 1.<sup>2</sup> The  $\gamma\delta$ -unsaturated compounds react in a similar manner to the corresponding dienes to give the 7-oxa and 7 aza-2-phosphabicyclo [2.2.1] heptanes, e.g.



The above reaction led to the examination of the reaction between complex 1 and 1,*n* diketones. Among the first examined diketones were the 1, 5 diones. Unfortunately, under usual reaction conditions  $(CH_2Cl_2, 0-10^\circ)$  no low molecular compound could be isolated. The literature revealed the reaction of Vyzotskii between 2-( $\alpha$ -phenacylbenzyl)cyclohexanone and PCl<sub>3</sub> which led to a mixture of three products.<sup>3</sup>

The reaction of MePX<sub>2</sub> and 1, 5-diphenylpentan-1, 5-dione afforded two isomeric crystalline compounds, 2 and 3. Under similar conditions, 1,n-dienes and unsaturated ketones failed to give any pure products. Thus, Vyzotskii's reaction seems to be specific for 1, 5 diketones, as can be expected from the mechanism<sup>3</sup> (The following Scheme indicates compounds 5 and 6 to be intermediates of 7).





Both 2 and 3 are structural isomers,  $C_{19}H_{22}O_4P_2$  (mass spectra and elemental analysis). The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 2 and 3 (Table 1 and Experimental) clearly show the following moieties: 2 phenyls and a -(CH<sub>2</sub>)<sub>3</sub>chain (as could be expected starting from a 1, 5diphenylpentadione), 2-MeP(O)O- groups and 2 quaternary C atoms  $\alpha$  to O and P atoms. Characteristic for the MeP(O)OC- moiety are the relative large J<sub>pc</sub>-values (e.g. 81 and 87 Hz in 2). Compound 3 exhibiting a single P-Me resonance line, is of higher symmetry than 2 which shows two signals for the P-Me groups.

According to the spectral data, more than a single bicyclic structure could be suggested for 2 and 3 (Structures I and II).

All chemical efforts to distinguish between I and II as either one can give more than a single stereoisomer failed. Thus, we turned to an X-ray diffraction analysis.



An ORTEP view of the molecular structures of 2 and 3 is shown in Fig. 1. The structure of 3 is in agreement with the proposed model I (see above), having an approximate mirror  $(C_s)$  symmetry. The less symmetric product 2 has an isomeric structure, in which there is a different arrangement of substituents on one of the P atoms. However, in both molecules the bicyclic frame-

<u>5</u>

|                                  |                                     | 2                        |                                    | <u>3</u>                          | 4                                  |
|----------------------------------|-------------------------------------|--------------------------|------------------------------------|-----------------------------------|------------------------------------|
|                                  | 3.08 bd                             |                          | <u>2.66m</u>                       | 3.07 bd                           | 3.02 bd                            |
| H <sub>6a</sub> ,H <sub>8a</sub> | <sup>1</sup> 6a68 <sup>= 14</sup>   |                          |                                    | <sup>J</sup> 6α6β <sup>=</sup> 14 | <sup>J</sup> 6α6β <sup>≈</sup> 14  |
|                                  | <sup>3</sup> J <sub>6αP</sub> ≈ 2.5 |                          |                                    | <sup>3</sup> J <sub>6αP</sub> = 2 | <sup>3</sup> J <sub>6αP</sub> = 2  |
|                                  | J <sub>6α7α</sub> = 3.8             |                          |                                    | $J_{6\alpha7\alpha} = 3.4$        | $J_{6a7a} = 3.2$                   |
|                                  |                                     |                          |                                    | $J_{6\alpha7\beta} = 2.5$         |                                    |
|                                  | 1.78d quintet                       |                          | 2.05m                              | 1.77d quintet                     | 1.88 quintet                       |
| <sup>н</sup> 6в <sup>н</sup> 8в  | <sup>3</sup> J <sub>6βP</sub> = 28  |                          | <sup>3</sup> J <sub>86P</sub> ≠ 22 | <sup>3</sup> Ј <sub>6ВР</sub> =28 | <sup>3</sup> J <sub>68P</sub> ≈ 28 |
|                                  | J <sub>6β7α</sub> = 14              |                          |                                    | J <sub>6β7α</sub> =14             | $J_{6\beta7\alpha} = 14$           |
|                                  | J <sub>6a68</sub> =14               |                          |                                    | J <sub>6β6α</sub> = 14            | J <sub>6α6β</sub> = 14             |
|                                  | J <sub>6β7β</sub> <sup>=</sup> 5    |                          |                                    | $J_{6876} = 4.6$                  |                                    |
|                                  |                                     | 2.41 tquartet            |                                    | 2.48 tquartet                     | <u>3.77 tt</u> . a                 |
| H7a                              |                                     | $J_{7\alpha7\beta} = 14$ |                                    | $J_{7\alpha7\beta} = 14$          |                                    |
|                                  |                                     | $J_{7\alpha6\beta} = 14$ |                                    | J <sub>7a6b</sub> = 14            | J <sub>7a66</sub> = 14             |
|                                  |                                     | <sup>J</sup> 7α6α ≈ 3.8  |                                    | $J_{7\alpha 6\alpha} = 3.4$       | $J_{7a6a} = 3.2$                   |
| Н <sub>78</sub>                  |                                     | 2.14 dd                  |                                    | 2.00 bd                           |                                    |
|                                  |                                     | <sup>J</sup> 7β7α ≈ 14   |                                    | $J_{7\beta7\alpha} = 14$          |                                    |
|                                  |                                     | J <sub>7868</sub> = 5    |                                    | J <sub>7866</sub> = 4.6           |                                    |
|                                  |                                     |                          |                                    | J = 2.5<br>7β6α                   |                                    |
| P-CH3                            | 1.480                               |                          | 1.79dd                             | 1.245 bd                          | 1.270 bd                           |
|                                  | J <sub>PH</sub> = 14                |                          | J <sub>PH</sub> = ?4               | <sup>3</sup> рн = 13              | J <sub>PH</sub> = 13.5             |
|                                  |                                     |                          | Ј <sub>НН</sub> = 1                |                                   |                                    |

Table 1. <sup>1</sup>H NMR data of compounds 2-4

Note: (a) observed separately from the OMe signal when recording the spectrum in CsDsN



Fig. 1. ORTEP view of compounds 2 and 3.

work is the same. The difference between the relative orientations of the phenyl substituents could be attributed to the different nature of the 1, 2 phenyl-tomethyl and phenyl-to-phosphoryl steric interactions.

Details of the molecular geometries in the two compounds, which characterize covalent bonding in the diphosphabicyclo [3.3.1] nonane framework are compared in Table 2. They reveal the distribution of conformational strain within this system. For example the covalent bonds involving the quaternary C atoms are consistently longer than  $C(sp^3)-C(sp^3)$  and  $C(sp^3)-P$ bonds in other parts of the molecule, or than  $C(sp^3)-O$ bonds in ethers.

Interestingly, 2 crystallizes as a dihydrate, each water molecule being associated with one of the P=O groups. The observed P=O...Ow distances are 2.80 and 2.83 Å. In the crystal the H<sub>2</sub>O molecules are located close to the inversion centers, allowing H-bonding interactions (at  $O_{w...}O_{w}$  distances of 2.83–2.84 Å) between the centro-symmetrically related entities. Consequently, there is a network of H-bonds extending throughout the crystal and stabilizing the structure.

After the structure determination of 2 and 3 by X-ray analysis, the interpretation of the NMR spectra could be undertaken. Among the spectra of 2 and 3, elucidation of

| Table 2. Bond | d distances (Å) and bond angles (°) in the 3.9-dioxa-2, 4-diphosphabicyclo[3.3.1]nonanes. (Th | 1e |
|---------------|-----------------------------------------------------------------------------------------------|----|
|               | crystallographic numbering of atoms is shown in the Experimental)                             |    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | ( <u>3</u> ) | ( <u>2</u> ) |                      | (3)      | (2)      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|--------------|----------------------|----------|----------|
| $\begin{array}{c} P(1) & - C(19) & 1.776(3) & 1.769(2) & C(7) - C(6) & 1.535(3) & 1.531(2) \\ P(1) & - 0(3) & 1.602(2) & 1.622(3) & C(7) - O(1) & 1.446(3) & 1.450(2) \\ P(1) & - 0(4) & 1.694(2) & 1.473(1) & C(6) - C(9) & 1.516(3) & 1.519(4) \\ P(2) & - C(11) & 1.694(2) & 1.643(2) & C(9) - C(10) & 1.512(4) & 1.512(3) \\ P(2) & - C(18) & 1.774(23) & 1.774(22) & C(11) - C(11) & 1.531(3) & 1.532(3) \\ P(2) & - 0(2) & 1.656(2) & 1.472(2) & C(11) - O(1) & 1.444(3) & 1.532(3) \\ P(2) & - 0(2) & 1.656(2) & 1.472(2) & C(11) - O(1) & 1.644(3) & 1.547(3) \\ C(1) & - C(2) & 1.386(4) & 1.397(4) & C(12) - C(13) & 1.390(4) & 1.396(4) \\ C(1) & - C(2) & 1.386(4) & 1.397(4) & C(12) - C(13) & 1.390(4) & 1.396(4) \\ C(1) & - C(6) & 1.386(4) & 1.397(4) & C(13) - C(14) & 1.397(4) & 1.386(3) \\ C(2) & - C(3) & 1.384(3) & 1.393(4) & C(13) - C(14) & 1.377(4) & 1.380(5) \\ C(3) & - C(4) & 1.364(3) & 1.397(3) & C(16) - C(17) & 1.377(4) & 1.380(5) \\ C(4) & - C(5) & 1.370(5) & 1.367(3) & C(16) - C(17) & 1.377(4) & 1.386(3) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P(1) - C(7)                     | 1.840(2)     | 1.860(2)     | C(5) - C(6)          | 1.384(4) | 1.394(5) |
| $ \begin{split} P(1) &= 0(3) & 1.602(2) & 1.622(2) & C(7) &= 0(1) & 1.446(3) & 1.450(2) \\ P(1) &= 0(4) & 1.602(2) & 1.630(2) & C(9) & 1.518(3) & 1.510(4) \\ P(2) &= C(10) & 1.772(3) & 1.774(2) & C(10) & C(10) & 1.512(4) & 1.512(3) \\ P(2) &= C(10) & 1.772(3) & 1.774(2) & C(10) & C(12) & 1.524(4) & 1.517(3) \\ P(2) &= 0(2) & 1.650(2) & 1.472(2) & C(11) &= C(12) & 1.524(4) & 1.517(3) \\ P(2) &= 0(2) & 1.650(2) & 1.607(2) & C(11) &= C(13) & 1.300(3) & 1.474(4) \\ P(2) &= 0(3) & 1.650(2) & 1.607(2) & C(12) &= C(13) & 1.300(3) & 1.379(3) \\ C(1) &= C(2) & 1.380(4) & 1.397(4) & C(12) &= C(17) & 1.391(4) & 1.396(4) \\ C(1) &= C(7) & 1.515(3) & 1.521(3) & C(13) &= C(14) & 1.397(4) & 1.380(5) \\ C(2) &= C(3) & 1.380(4) & 1.374(5) & C(13) &= C(16) & 1.377(4) & 1.380(5) \\ C(2) &= C(3) & 1.370(5) & 1.367(3) & C(16) &= C(17) & 1.375(4) & 1.380(5) \\ C(4) &= C(5) & 1.370(5) & 1.367(3) & C(16) &= C(17) & 1.375(4) & 1.380(5) \\ C(4) &= C(7) & 106.5(1) & 111.4(1) & C(1) &= C(7) &= C(16) & 109.6(1) & 113.3(2) \\ O(3) &= f(1) &= C(19) & 106.5(1) & 111.4(1) & C(1) &= C(7) &= C(16) & 113.7(2) & 113.0(2) \\ O(4) &= f(1) &= C(19) & 106.4(1) & 103.4(1) & 0(1) &= C(7) &= C(10) & 109.4(2) & 106.4(2) \\ O(4) &= f(1) &= C(19) & 106.4(1) & 103.4(1) & 0(1) &= C(7) &= C(10) & 109.4(2) & 106.4(2) \\ O(4) &= f(1) &= C(10) & 114.1(1) & 114.6(1) & C(10) &= C(10) & -C(10) & 109.4(2) & 110.4(2) \\ O(4) &= f(1) &= C(10) & 114.1(1) & 114.6(1) & C(10) &= C(11) &= C(12) & 110.4(2) & 110.4(2) \\ O(4) &= f(1) &= C(10) & 114.1(1) & 114.6(1) & C(10) &= C(11) &= C(12) & 106.4(2) & 106.4(2) \\ O(4) &= f(1) &= C(10) & 114.1(1) & 114.6(1) & C(10) &= C(11) &= C(12) & 107.4(1) & 108.4(2) \\ O(4) &= f(1) &= C(10) & 114.4(2) & 115.4(1) & P(2) &= C(11) &= C(12) & 106.4(2) & 106.4(2) \\ O(4) &= f(1) &= C(10) & 106.0(1) & P(2) &= C(11) &= C(12) &= C(13) &= C(10) &= C(11) &= C(12) &= C(13) &= C(10) &= C(11) &= C(12) &= C(13) &= C(11) &= C(12) &= C(13) &= $          | P(1) = C(19)                    | 1.776(3)     | 1,769(2)     | C(7) - C(8)          | 1.535(3) | 1.531(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P(1) = O(3)                     | 1.602(2)     | 1.622(2)     | C(7) = O(1)          | 1.448(3) | 1.450(2) |
| $ \begin{aligned} P(2) &= C(11) & 1.654(2) & 1.663(2) & C(9) &= C(10) & 1.512(4) & 1.512(4) \\ P(2) &= C(10) & 1.774(2) & C(10) &= C(11) & 1.514(3) & 1.532(2) \\ P(2) &= D(2) & 1.458(2) & 1.472(2) & C(11) &= C(12) & 1.524(4) & 1.517(3) \\ P(2) &= D(3) & 1.618(2) & 1.607(2) & C(11) &= D(1) & 1.444(3) & 1.444(3) \\ P(2) &= D(3) & 1.618(2) & 1.607(2) & C(11) & D(1) & 1.444(3) & 1.444(3) \\ P(2) &= C(2) & 1.386(4) & 1.387(2) & C(12) &= C(13) & 1.390(4) & 1.396(3) \\ C(1) &= C(2) & 1.386(4) & 1.387(4) & C(12) &= C(13) & 1.391(4) & 1.395(3) \\ C(1) &= C(3) & 1.384(4) & 1.383(4) & C(14) &= C(15) & 1.377(4) & 1.385(3) \\ C(2) &= C(3) & 1.384(4) & 1.383(4) & C(14) &= C(15) & 1.377(4) & 1.386(3) \\ C(3) &= C(4) & 1.361(4) & 1.374(5) & C(15) & C(16) & 1.372(5) & 1.386(4) \\ C(4) &= C(5) & 1.370(5) & 1.367(3) & C(16) &= C(17) & 1.375(4) & 1.386(3) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P(1) = O(4)                     | 1.464(2)     | 1.473(1)     | C(8) - C(9)          | 1.518(3) | 1.519(4) |
| $\begin{array}{c} f(2) = C(1.6) & 1.772(3) & 1.774(2) & C(10) = C(11) & 1.531(3) & 1.532(3) \\ f(2) = 0(2) & 1.656(2) & 1.472(2) & C(11) = C(12) & 1.524(4) & 1.517(3) \\ f(2) = 0(3) & 1.616(2) & 1.607(2) & C(11) = 0(1) & 1.444(3) & 1.444(3) \\ c(1) = C(2) & 1.386(4) & 1.387(2) & C(12) = C(17) & 1.391(4) & 1.396(4) \\ c(1) = C(7) & 1.515(3) & 1.521(3) & C(13) = C(17) & 1.391(4) & 1.396(4) \\ c(1) = C(7) & 1.515(3) & 1.521(3) & C(13) = C(14) & 1.397(4) & 1.386(5) \\ c(2) = C(3) & 1.384(4) & 1.374(5) & C(13) = C(16) & 1.372(5) & 1.365(4) \\ c(4) = C(5) & 1.370(5) & 1.367(3) & C(16) = C(17) & 1.375(4) & 1.386(5) \\ c(4) = C(5) & 1.370(5) & 1.367(3) & C(16) = C(17) & 1.375(4) & 1.386(5) \\ \hline \\ c(4) = C(19) & 108.5(1) & 111.4(1) & C(1) = C(7) = C(8) & 109.6(1) & 113.3(2) \\ c(3) = r(1) = C(19) & 108.5(1) & 111.4(1) & C(1) = C(7) = C(8) & 109.6(1) & 113.3(2) \\ c(4) = r(1) = C(19) & 108.5(1) & 111.4(1) & C(1) = C(7) = C(8) & 109.6(1) & 113.3(2) \\ c(6) = r(1) = C(19) & 104.6(1) & 101.6(1) & C(19) = C(10) & 109.6(2) & 104.6(1) \\ c(6) = r(1) = C(19) & 114.1(1) & 114.6(1) & C(6) = C(9) = C(10) & 109.3(2) & 110.1(2) \\ c(6) = r(1) = C(19) & 114.1(1) & 113.4(1) & C(7) = C(8) = C(9) & 113.7(2) & 113.6(2) \\ c(6) = r(1) = C(13) & 111.4(1) & 113.4(1) & C(7) = C(10) = C(10) & 109.3(2) & 110.1(2) \\ c(11) = r(2) = C(110) & 114.4(1) & 114.6(1) & C(19) = C(10) = C(11) & 112.4(1) & 113.4(2) \\ c(11) = r(2) = C(110) & 114.4(1) & 114.5(1) & 124.5(1) & C(10) = C(11) = C(12) & 106.6(2) & 105.7(1) \\ c(2) = r(2) = C(110) & 114.4(2) & 112.5(1) & C(10) = C(11) = C(12) & 106.6(2) & 105.7(1) \\ c(3) = r(2) = C(10) & 103.7(1) & 106.5(1) & C(10) = C(11) = C(12) & 106.6(2) & 105.7(1) \\ c(3) = r(2) = C(10) & 103.7(1) & 105.5(1) & C(10) = C(11) = C(12) & 106.6(2) & 105.7(1) \\ c(3) = r(2) = C(10) & 103.7(1) & 105.5(1) & C(10) = C(11) = C(12) & 106.6(2) & 105.7(1) \\ c(3) = r(2) = C(10) & 103.7(1) & 105.5(1) & C(10) = C(11) = C(12) & 106.6(2) & 105.7(2) \\ c(3) = r(2) = C(10) & 103.7(1) & 105.5(1) & C(10) = C(11) = C(12) & 106.6(2) & 105.7(2) \\ c(3) = r(2) = C(13) & 100.6(2) &$ | P(2) = C(11)                    | 1.854(2)     | 1.843(2)     | C(9) - C(10)         | 1.512(4) | 1.512(3) |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P(2) = C(18)                    | 1.772(3)     | 1.774(2)     | C(10)- C(11)         | 1.531(3) | 1.532(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P(2) = 0(2)                     | 1.458(2)     | 1.472(2)     | C(11)- C(12)         | 1.524(4) | 1.517(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P(2) - D(3)                     | 1.618(2)     | 1.607(2)     | C(11) = O(1)         | 1.444(3) | 1.444(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(1) = C(2)                     | 1.386(4)     | 1.387(2)     | C(12)- C(13)         | 1.390(3) | 1.379(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(1) = C(6)                     | 1.388(4)     | 1.390(4)     | C(12)- C(17)         | 1.391(4) | 1.396(4) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(1) = C(7)                     | 1.515(3)     | 1.521(3)     | C(13)- C(14)         | 1.387(4) | 1.385(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(2) = C(3)                     | 1.384(3)     | 1.383(4)     | C(14)- C(15)         | 1.377(4) | 1.380(5) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(3) - C(4)                     | 1.361(4)     | 1.374(5)     | C(15) - C(16)        | 1.372(5) | 1.365(4) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(4) - C(5)                     | 1.370(5)     | 1.367(3)     | C(16)- C(17)         | 1.375(4) | 1.386(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C(7) \rightarrow P(1) - C(19)$ | 108.5(1)     | 111.4(1)     | C(1) -C(7) -C(8)     | 109.6(1) | 113.3(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q(3) -P(1) -C(7)                | 102.8(1)     | 101.8(1)     | C(1) = C(7) = O(1)   | 106.9(2) | 104.8(1) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(3) -P(1) -C(19)               | 104.8(1)     | 103.3(1)     | D(1) - C(7) - C(8)   | 112.4(2) | 110.6(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(4) -P(1) -C(7)                | 114.6(1)     | 113.1(1)     | C(7) - C(8) - C(9)   | 113.7(2) | 113.0(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(4) -P(1) -C(19)               | 114.1(1)     | 114.6(1)     | C(8) - C(9) - C(10)  | 109.3(2) | 110.1(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(4) -P(1) -O(3)                | 111.1(1)     | 111.5(1)     | C(9) = C(10) = C(11) | 112.1(1) | 113.4(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(11)-P(2) -C(18)               | 109.0(1)     | 108.0(1)     | P(2) = C(11) = C(12) | 107.4(1) | 108.1(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(2) -P(2) -C(11)               | 114.2(1)     | 125.1(1)     | P(2) = C(11) = D(1)  | 108.8(2) | 105.7(1) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(2) -P(2) -C(18)               | 115.2(1)     | 114.5(1)     | C(10)-C(11)-P(2)     | 110.7(2) | 112.3(1) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(3) -P(2) -C(11)               | 103.0(1)     | 102.3(1)     | C(10)-C(11)-C(12)    | 112.8(2) | 111.7(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(3) -+(2) -C(18)               | 103.7(1)     | 105.5(1)     | C(10)-C(11)-O(1)     | 111.2(1) | 112.3(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0(3) -P(2) -0(2)                | 110.7(1)     | 110.5(1)     | 0(1) -C(11)-C(12)    | 105.9(2) | 106.4(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(6) -C(1) -C(2)                | 118.4(2)     | 118.5(2)     | C(11)-C(12)-C(13)    | 121.4(2) | 121.9(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(7) -C(1) -C(2)                | 122.0(2)     | 120.1(2)     | C(11)-C(12)-C(17)    | 120.1(2) | 119.5(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(7) -C(1) -C(6)                | 119.6(2)     | 121.1(4)     | C(17)-C(12)-C(13)    | 110.4(2) | 118.6(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(1) -C(2) -C(3)                | 120.2(2)     | 120.6(3)     | C(12)-C(13)-C(14)    | 120.7(2) | 120.5(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(2) -C(3) -C(4)                | 121.0(3)     | 120.6(2)     | C(13)-C(14)-C(15)    | 119.8(3) | 120.5(2) |
| C(4) -C(5) -C(6) 120.3(3) 120.9(3) C(15)-C(16)-C(17) 120.6(3) 120.8(3)   C(5) -C(6) -C(1) 120.5(2) 120.0(2) C(16)-C(17)-C(12) 120.6(3) 120.2(2)   P(1) -C(7) -C(8) 112.3(2) 113.4(1) C(11)-O(1) -C(7) 118.1(2) 118.8(1)   P(1) -C(7) -O(1) 106.2(1) P(2) -O(3) -P(1) 135.2(1) 128.4(1)   C(1) -C(7) -P(1) 109.1(1) 107.9(1) P(2) -O(3) -P(1) 135.2(1) 128.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(3) -C(4) -C(5)                | 119.6(3)     | 119.4(3)     | C(14)-C(15)-C(16)    | 119.9(3) | 119.4(2) |
| C(5) -C(6) -C(1) 120.5(2) 120.0(2) C(16)-C(17)-C(12) 120.6(3) 120.2(2)   P(1) -C(7) -C(8) 112.3(2) 113.4(1) C(11)-O(1) -C(7) 118.1(2) 118.8(1)   P(1) -C(7) -O(1) 106.3(1) 106.2(1) P(2) -O(3) -P(1) 135.2(1) 128.4(1)   C(1) -C(7) -P(1) 109.1(1) 107.9(1) 107.9(1) 107.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(4) - C(5) - C(6)              | 120.3(3)     | 120.9(3)     | C(15)-C(16)-C(17)    | 120.6(3) | 120.8(3) |
| P(1) -C(7) -C(8) 112.3(2) 113.4(1) C(11)-O(1) -C(7) 118.1(2) 118.8(1)   P(1) -C(7) -O(1) 106.3(1) 106.2(1) P(2) -O(3) -P(1) 135.2(1) 128.4(1)   C(1) -C(7) -P(1) 109.1(1) 107.9(1) P(2) -O(3) -P(1) 135.2(1) 128.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(5) - C(6) - C(1)              | 120.5(2)     | 120.0(2)     | C(16)-C(17)-C(12)    | 120.6(3) | 120.2(2) |
| P(1) -C(7) -O(1) 106.3(1) 106.2(1) P(2) -O(3) -P(1) 135.2(1) 128.4(1.<br>C(1) -C(7) -P(1) 109.1(1) 107.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P(1) - C(7) - C(8)              | 112.3(2)     | 113.4(1)     | C(11)-O(1) -C(7)     | 118.1(2) | 118,8(1) |
| C(1) -C(7) -P(1) 109.1(1) 107.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P(1) = C(7) = O(1)              | 106.3(1)     | 106.2(1)     | P(2) = O(3) = P(1)   | 135.2(1) | 128.4(1) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(1) -C(7) -P(1)                | 109.1(1)     | 107.9(1)     |                      |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |              |              |                      |          |          |

those belonging to the less symmetrical 2, was straight forward (Table 1 and Experimental). The <sup>1</sup>H and <sup>13</sup>C NMR spectra of  $^{\circ}$ 3, on the other hand,

The 'H and 'C NMR spectra of 3, on the other hand, require some explanations. Both spectra contain secondorder resonance line systems. The most unusual 2 Me's signal of the CH<sub>3</sub>P(O)–O–P(O)CH<sub>3</sub> moiety (Fig. 2) might well find its rationale assuming the Me to be part of a  $[AXn]_2$  spin system. Our results are in good agreement with the spectra of molecules of type  $[R_2P(X)]_2Y$  which were analyzed by Hagele *et al.* on the basis of a  $[AXn]_2$ 



Fig. 2. Partial <sup>1</sup>H NMR spectrum of compound 3. (a) Calculated with the Bruker PANIC program, (b) observed.



Fig. 3. <sup>13</sup>C NMR of compound 3.

spin system and were simulated by computer programs.<sup>4</sup> Simulation of the <sup>1</sup>H-spectrum of 3 (Fig. 2)\* gave good agreement with the observed spectrum.

In the <sup>13</sup>C NMR spectrum of 3, the  $C_{1(5)}$  and the two P-CH<sub>3</sub> signals are outstanding; both giving rise to 5 line multiplets centered at 77.0 and 11.6 ppm respectively (Fig. 3).

When there are two additional (to the <sup>13</sup>C and <sup>1</sup>H) spin-1/2 nuclei present in a compound and they are strongly coupled among themselves, the <sup>13</sup>C spectrum may be second-order.' Such a situation is common for compounds containing two P-atoms, since, as is well-known  $J_{pp}$  can be quite large. In particular <sup>13</sup>C spectrum will in general be second-order when the P nuclei are in equivalent chemical positions. The "C spectrum will then be the X region of an ABX system. Since isotopic chemical shifts induced by <sup>13</sup>C in <sup>31</sup>P resonance are likely to be small (relative to  $J_{pp}$ ) the value of  $\Delta \nu_{AB}$  will also be small; moreover, a 5-line pattern will result for the <sup>13</sup>C spectrum rather than the more general 6-line X spectrum expected from an ABX system.6.7 Five-line patterns were observed for example in 1.6-diphosphatriptycene,<sup>\*</sup> diphosphanes, dithioxo<sup>5</sup>-λ diphosphanes and other compounds.<sup>9</sup> A full interpretation of the  $[AXn]_2$  system (A=P) of the latter and similar compounds requires the knowledge of the JPC-values. These coupling constant are sometimes available from the observation of the <sup>13</sup>C satellites in the <sup>31</sup>P spectrum. However, there are cases, as was found for 3, where such data are not available.<sup>8</sup> Jakobsen has shown that the  $^{13}C^{-31}P$  and <sup>31</sup>P-<sup>31</sup>P coupling constants may also be determined solely from an analysis based on line position and intensities of the PND <sup>13</sup>C NMR spectrum.<sup>8</sup> Using this approach the spectrum of 3 could be rationalized and a good agreement was found between the calculated (based on the J values given in Table 3) and measured spectra.

Reacting 3-p-methoxyphenyl-1, 5-diphenylpentan-1, 5dione with MePCl<sub>2</sub> afforded a single compound, 4. The proton NMR spectrum of H-7 of 4 (possessing an axialaxial coupling constant of 14 Hz, Table 1) establishes the equatorial position of the *p*-methoxyphenyl substituent.

Supplementary material available. Tables of atomic coordinates and thermal parameters for 2 and 3 (4 pages) have been deposited with the British Library Lending Division.

#### EXPERIMENTAL

M.ps were taken on a Unimelt Thomas and Hoover's capillary m.p. apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer Infracord model 337 Spectrophotometer. NMR spectra were taken on a Bruker WH-300 or a Jeol JNM-C-60HL spectrometer (equipped with a P-decoupler) on 5-10% soln in CDCl<sub>3</sub> containing 1% TMS. <sup>13</sup>C-NMR spectra were taken on a Bruker WH-90 (22.63 MHz) instrument in CDCl<sub>3</sub>; all chemical shifts are reported with respect to TMS ( $\delta o$ ). Mass spectra were recorded on a DuPont 21-491B spectrometer.

General procedure. In the course of 5 min with stirring, 0.05 mol of the 1, 5-diketone was added in small portions to 0.01 mol of  $CH_3PCl_2$  at 60°. Then, at the same temp 3mL of HOAc (gla) was added. The mixture was kept for 2 hr at 60°, then cooled down to r.t. and stirred for additional 16 hr. The mixture was then poured onto ice, extracted with CHCl<sub>3</sub> (3 × 30 mL), washed with NaHCO<sub>3</sub> aq, dried over MgSO<sub>4</sub>, evaporated and finally submitted to a silica-gel column for chromatography.

Submitted to a sinca get column for chromatography. Compound 2. M.p. (Acetone) 214°,  $\nu_{max}^{CHCl_1}$  1490, 1450, 1310, 1050, 990, 940. 760 and 700 cm<sup>-1</sup>, <sup>13</sup>C NMR,  $\delta$  (d<sub>6</sub>-DMSO): 12.6 dq ( $I_{pc} = 81$  Hz), 13.0 dq ( $I_{pc} = 87$  Hz), 17.4 t, 31.0 t, 30.5 t, 77.6 d ( $I_{pc} = 91$  Hz), and 77.9 d ( $I_{pc} = 95$  Hz), mass spectrum (m/e,%); 376 ( $M^*$ , 70), 296(30), 270(65), 244(45), 243 (100) and 235(80), for <sup>1</sup>H NMR see Table 1.

Compound 3. M.p. (acetone) 230°,  $\nu_{max}^{CHCl_1}$  1505, 1450, 1430, 1310, 1305, 1250, 1210, 1100, 1050, 990, 950, 930, 910, 890, 880, 790, 760, 710, 680 and 660 cm<sup>-1</sup>, <sup>13</sup>C NMR,  $\delta(d_6$ -DMSO): 11.63 (5 lines see Table 3), 22.55 t, 35.87 t(× 2), 77.01 (5 lines, see Table 3), mass spectrum (*m*/*e*, %): 376 (M<sup>+</sup>, 3), 297(10), 296(18), 282(35), 243(100), 235(30) and 182(43), for <sup>1</sup>H NMR see Table 1. Compound 4. M.p. (acetone) 193°,  $\nu_{max}^{CHCl_1}$  1600, 1510, 1450,

Compound 4. M.p. (acetone) 193°,  $\nu_{\text{max}}^{\text{CHC1}}$  1600, 1510, 1450, 1310, 1250, 1210, 1180, 1100, 1030, 1010, 950, 890, 760, and 770 cm<sup>-1</sup>, <sup>13</sup>C NMR,  $\delta$  (CDC1<sub>3</sub>) 13.06 (5 lines, see Table 3), 34.6d, 39.6t (×2), 55.1 q (OCH<sub>3</sub>), 79.3 (5 lines, see Table 3), mass spectrum (*mle* %) 482 (M<sup>\*</sup>, 40), 402(67), 388(50) and 340(100) for <sup>1</sup>H NMR see Table 1.

Crystal structure analyses. X-ray diffraction data were measured on an Enraf-Nonius CAD4 diffractometer equipped with a graphite monochromator, employing MoK $\alpha$  radiation ( $\overline{\lambda} =$ 0.71069 Å). For both compounds the unit-cell dimensions were determined from 2 $\theta$  measurements of 25 carefully centered

<sup>\*</sup>The assignment of the spectrum was verified by calculated simulation with the Bruker PANIC program.

Table 3. <sup>13</sup>C NMR data of compounds 3 and 4<sup>6,7</sup>

|                               | N *  | 2(D++D-)* | J (calculated)                                          |
|-------------------------------|------|-----------|---------------------------------------------------------|
| <u>3</u><br>P-CH <sub>3</sub> | 88.8 | 144       | $J_{pp} = 56, J_{PCH_3} = 89.5, J_{PCH_3} = 0.9$        |
| <u></u>                       |      |           |                                                         |
| P-C-                          | 93.6 | 143       | $J_{pp} = 56, J_{PC_2} = 92, {}^{3}J_{PC_2} = 2.$       |
| 4                             |      |           |                                                         |
| P-CH3                         | 91   | 145       | $J_{pp} = 56, J_{PCH_3} = 91.5, {}^{3}J_{PCH_3} = -0.6$ |
| 4                             |      |           | ·                                                       |
| P - C                         | 98   | 150       | $J_{pp} = 56, J_{PC_2} = 98.5, {}^{3}J_{PC_2} = -0.5$   |
| * !                           |      |           |                                                         |

reflections and refined by the method of least-squares. Intensity data were collected in the  $\omega$ -2 $\theta$  mode with a scan width of  $0.9 + 0.35 \tan \theta$  out to  $2\theta = 50^\circ$ . The scan rate varied according to the detected intensity between 1.0 and 4.0° min<sup>-1</sup>. Intensitycontrol reflections, monitored frequently, showed no decay of the crystals. The intensities were corrected for Lorentz and polarization effects and variable measuring time but not for absorption or secondary extinction. Because of the small size of the crystals absorption corrections were not considered necessary. Compound 2 was found to cocrystallize with two mol of water.

Crystal data of 2.  $C_{19}H_{22}O_4P_2.2H_2O$ ,  $M_r = 412.4$ , triclinic, a = 10.185(1) Å, b = 10.566(2) Å, c = 11.117(2) Å,  $\alpha = 87.08(1)^\circ$ ,  $\beta = 108.13(1)^\circ$ ,  $\gamma = 116.02$  (1)°, V = 1016.5 Å<sup>3</sup>, Z = 2,  $d_c = 1.347$  g cm<sup>-3</sup>, F(000) = 436, space group P I.

Crystal data of 3.  $C_{19}H_{22}O_4P_2$ .  $M_r = 376.3$ , triclinic a = 8.687(2) Å, b = 11.017 (2) Å, c = 11.441 (2) Å,  $\alpha = 113.66$  (1)°,  $\beta = 105.16$  (1)°,  $\gamma = 95.48$  (1)°, V = 942.8 Å<sup>3</sup>, Z = 2,  $d_c = 1.325$  g, cm<sup>-3</sup>, F(000) = 396, space groups  $P \bar{1}$ .

Both structures were solved by direct methods using the MULTAN system of computer programs. Refinement was carried out by full-matrix least-squares calculations, including the atomic coordinates of all atoms, anisotropic thermal parameters of the non H-atoms, and isotropic thermal parameters of the hydrogens. All hydrogen atom positions could be found from the corresponding difference maps. The final discrepancy indices at the end of the refinement were R = 0.033 for 2929 observations above threshold of  $3\sigma$  of the intensity in 2, and R = 0.032 for 2466 unique observations above threshold in 3. Positional and thermal atomic parameters are available as supplementary

material; the crystallographic numbers shown below, differ from the systematic ones as there is no continuity in the latter.



### REFERENCES

- A. Rudi and Y. Kashman. Tetrahedron 37, 4269 (1981).
- <sup>2</sup>Y. Kashman and A. Rudi, Tetrahedron Letters 2695 (1981).
- <sup>3</sup>V. I. Vysotskii, J. A. Vasileva, V. N. Chernii, K. G. Chuprakova and M. N. Tilichenko, Zh. Obshch. Khim. 1714 (1979).
- <sup>4</sup>G. Hägele, W. Kuchen and H. Steinberger, Z. Naturforsch **B29**, 349 (1974).
- <sup>5</sup>S. Aime and R. K. Harris, J. Mag. Res 13, 236 (1974).
- <sup>6</sup>J. A. Pople, W. G. Schneider and H. J. Bernsteins, *High Resolution Nuclear Magnetic Resonance*. McGraw-Hill, New York( 1959).
- <sup>7</sup>S. Aime, R. K. Harris, E. M. McVicker and M. Field, J. Chem. Soc. Dalton 2144 (1976).
- <sup>8</sup>S. Sørensen and H. J. Jakobsen, Org. Mag. Res. 9, 101 (1977).
- <sup>9</sup>R. K. Harris, E. M. McVicker and G. Hägele, J. Chem. Soc. Dalton 9 (1978).